Governor Inslee To Address Washington State As Global Hub for Alternative Fuels

On May 20, the Consortium for Hydrogen And Renewably Generated E-Fuels (CHARGE) is offering its inaugural conference to address critical materials challenges in the energy and transportation sectors. As hydrogen and e-fuels are deployed as alternative fuels, several organizations are joining forces to make Washington State a global hub for commercializing new fuels and technologies.   

Save the Date: Thursday, May 20 from 8AM to 1PM.

Learn more about CHARGE.

JCDREAM CHARGE Conference visual explaining how renewable and alternative fuels are the future of energy.
Image Courtesy of JCDREAM

The following Washington State University (WSU) centers will act as founding members of the CHARGE Consortium:  

  • JCDREAM – Joint Center for Deployment and Research in Earth Abundant Materials 
  • HYPER – Hydrogen Properties for Energy Research 
  • ESIC – Energy Systems Innovation Center 
  • ASCENT – Aviation Sustainability Center

The consortium seeks commercialization partners in the following sectors (the survey request linked below is about identifying potential partners for pilot projects and programs): 

  • Transportation: marine, aviation, shipping, trucking, and personal transport OEMs with a focus on long term deep decarbonization 
  • Harvesting: agriculture, fishing, logging, and mining with the goal of long-term sustainability and circular carbon economies 
  • Cloud Computing: companies interested in alternative fuels for decarbonizing the cloud 
  • Utilities: focus on deploying and managing low cost or excess clean energy assets towards hydrogen or fuel production which is sold or used for long term energy storage and reintroduced to the grid  
  • Process Engineering: firms dedicated to innovative chemical engineering and process scaleup 
  • Chemical and Materials Manufacturing: companies that will commercialize new processes for hydrogen or fuel/chemical production and materials needed to enable efficient processing 

If you are interested in the CHARGE event, this page shares the details and asks you to take a short survey which will be used to connect potential collaborators around new pilot projects, including opportunities around public and private funding. 


More info:

MatEdU News wrote about the critical materials shortage last year: JCDREAM Drives Innovation For Earth-Abundant Materials:

“Around the globe, world leaders are issuing calls to action on the shortage of critical materials, also known as rare earth elements (REE), that impact everything from our cell phones and computer hard drives to military defense capabilities. The United States, the European Union, and Japan have all raised concerns for materials shortages and supply chain risks.”

We also included them in a post about the Race to the Ocean Floor that highlighted ocean explorations and plans for mining rare earth elements there. 

If you are wondering about the need for shifting from critical materials to sustainable materials, read this JCDREAM blog post on The Importance of Materials Science Education & Workforce Development.

JCDREAM Drives Innovation For Earth-Abundant Materials

JCDREAM website

Around the globe, world leaders are issuing calls to action on the shortage of critical materials, also known as rare earth elements (REE), that impact everything from our cell phones and computer hard drives to military defense capabilities. The United States, the European Union, and Japan have all raised concerns for materials shortages and supply chain risks.

A significant number of university departments and government agencies are approaching this challenge from different perspectives. In Washington State, the Joint Center for Deployment and Research in Earth Abundant Materials (JCDREAM), located at Washington State University at Everett, is flipping the equation and asking first how we find and explore existing alternatives and future alternatives with “earth-abundant materials.”

The JCDREAM Symposium organizes and coordinates, via Zoom, discussions on the future of sustainable materials and how to tackle the challenge. Two recent ones are available in their archive, but the December topic (register by clicking the title link): Advancing Critical, Rare and Abundant Materials Education in Washington State includes materials experts Mel Cossette & Ann Avary. If you miss the December 8 event, a recording will be shared on JCDREAM archive page a few days after the presentation.

From the site: “Cossette and Avary have worked to advance materials science education and workforce development in the state of Washington for decades. They are combining their expertise in these areas to widen the focus to critical and earth-abundant materials to ensure that the next generation of engineers and technicians are prepared to address these issues.”

You can also keep tabs on the JCDREAM Symposium 2021 upcoming topics (dates TBD)

    • Battery Materials and Electrification
    • Washington State Policy Feature
    • National Security and Material Supply Chains

If all this discussion about rare earth elements has you wondering about the full list, you need only revisit the periodic table from your high school or university chemistry class. JCDREAM has a terrific Resource page that includes a “Rare Earths 101” factsheet and a long list of blog posts that can help you refamiliarize yourself with materials science and rare earth elements.

To whet your appetite, according to United States Geological Survey (USGS), there are 17 REEs:

    • Lanthanide elements (15 in total – atomic numbers 57 through 71 on the periodic table)
    • Scandium
    • Yttrium

There are also energy critical elements (ECEs) that are used widely in energy production, transmission, and storage. These include elements you will likely recognize: lithium, cobalt, selenium, and silicon, to name just a few.

Source: Center for Sustainable Systems, University of Michigan. 2020. “Critical Materials Factsheet.” Pub. No. CSS14-15NOTE: This factsheet has some terrific graphics to show which materials are in a critical stage (lack of supply) to non-critical. The American Geosciences Institute provides a great overview: What are rare earth elements, and why are they important? that includes a variety of links to the USGS and other helpful sites.

MatEdU News will update this post with further info and links to various Symposia or other resources in the race to protect the earth’s critical materials.

Chippewa Valley Technical College Offers Additive Manufacturing Symposium

In this Additive Manufacturing virtual symposium, on Friday, November 6th, Mahmood Lahroodi and team have set up a morning of packed-sessions on what is happening in the world of advanced 3D printing. Here’s a look at tomorrow’s agenda:

You can join the event by clicking here starting at 9am Central time. Here are some of the advanced sessions you can join tomorrow for free:

  • Introduction by Mahmood Lahroodi-CVTC
  • Reviewing NSF-DREAM Website by Hans Mikelson-CVTC
  • Advancements in Metal 3D Printers by Terry Cambron-Desktop Metal
  • From Powder to Performance by Dr. Pradeep Bhattad-Oak Ridge National Laboratory
  • Entrepreneurial Mindset in AM by Rick and Sarah Heuer – Heuer Studios
  • Metal 3D Printer by Ryan Prigge-Productivity
  • Reverse Engineering using Additive Manufacturing  by Joe Vydrzal

The symposium comes via the NSF-funded Developing Resources for Enhancing Additive Manufacturing (DREAM) project (#1902501). The project has two major goals:

  1. Prepare technicians for manufacturing and engineering through applied education of additive manufacturing processes and concepts.
  2. Increase the capacity of rural secondary teachers to provide instruction in additive manufacturing.

MatEdU News also will share some other project information on its sister site, AM News, under the TEAMM project. We have an upcoming post that goes deeper on the technician education aspects, including details on the five additive manufacturing modules that support the Manufacturing Engineering Technologist and Mechanical Design associate degree programs at Chippewa Valley Technical College (CVTC).

The modules cross over our work here in Materials Science and Education as well as more advanced topics in training technicians, such as, metal additive manufacturing, design principles, and quality assurance for digital manufacturing. The CVTC facility is also home to a new Fab Lab with a range of 3D printers (including thermoplastic, stereolithography, composite material, and metal 3D printers) and a 3D laser scanner.

You also can view their first symposium (August 2020) on Additive Manufacturing on YouTube.

The session that dives deeper into materials science is from Dr. Pradeep Bhattad, business development manager of ZEISS Additive Manufacturing Process and Control at ZEISS Industrial Quality Solutions. He also is collaborating with Oak Ridge National Lab’s Manufacturing Demonstration Facility and will be sharing about the quality aspect of 3D printed parts (hint: That means materials). A recent article, Producing Additively Manufactured Parts, in Quality Magazine gives a glimpse into his talk on powder-based 3D printing.