About TJ McCue

I research and write about many STEM topics -- from Materials Science to 3D Printing to Nanotechnology, among other tech topics.

Materials Science as a Career Pathway

Editor’s Note

Materials Science Career Pathways Map

Materials Science Career Pathways Map

Within education circles, we often talk about Career Pathways. This month I was on the Edmonds College Materials Science degree page and wondered what students think when they hear that career pathways phrase? It seems obvious to me, and to you, perhaps to all of us in or near education.

But, what do the students think?

Do they draw a blank? Have they stopped to think about “Career Pathways” and what it means?

When a school talks about a “Career Pathway,” they’re talking about a set of courses, programs, and experiences that are specifically designed to get a student ready for a certain career field or industry.

It also started me wondering if there are standards or requirements for “career pathways” when descriptions are created? Do colleges adhere to these? I found out that colleges and universities are generally not required to adhere to specific standards or requirements when creating “career pathways” programs, as they are not regulated by any particular government agency or accrediting body. However, some organizations and accrediting bodies do provide guidelines and best practices for institutions to follow when creating career pathway programs.

However, there are organizations that strive to provide pathways that make sense. For example, the National Career Pathways Network (NCPN) is a national organization that provides resources and support for creating and improving career pathways programs, which is based on the Career Pathways Framework that includes four key elements: academic and technical skills, employability skills, leadership and workplace skills, and support services.

Additionally, the American Association of Community Colleges (AACC) has developed the Guided Pathways framework which is a comprehensive approach to student success and improved completion. This framework includes the following key elements: clear pathways, structured scheduling, integrated support services, and use of technology.

While these guidelines and best practices are not binding, many colleges and universities do choose to adopt them in order to ensure that their career pathway programs are effective and well-designed. Some states also have their own policies and guidelines for creating career pathway programs. It is also worth noting that these frameworks and guidelines are not mandatory but they can be used as a helpful tool for colleges and universities to improve their career pathway programs.

So, briefly, since this page Career Path in Materials Science at Edmonds College on MatEdU inspired this post, I thought you might find their approach helpful, too.

Also, here is another resource from the well-known Getting Smart team: New Pathways.

What are you doing to develop and create Career Pathways that make sense for your students? Let me know – I’d love to hear about it.

Looking Ahead at Materials Science in 2023

End of year is almost always a time to reflect and look ahead. Let’s do that.  

In early April 2022, MatEdU News highlighted three big materials science trends to watch and provided a variety of resources for readers (link below). We decided that another review would be helpful as we head into 2023 amidst quite disruptive trends hitting the mainstream news environment.

  1. Using artificial intelligence (AI) to create new materials
  2. Materials advances in biological areas (3D printing personalized medicines). 
  3. Sustainability in Materials Science combining Industry 4.0 concepts with the Circular Economy (aka sustainability) is crucial to smart science.

These three trends all appear to be true for 2023, especially the artificial intelligence (AI) one. Many readers have likely seen the news related to ChatGPT for generating written content as well as DALL-E for image creation. Both of these tools are amazing, fast, and changing everything they touch.

Although neither of these two are directly impacting AI for materials science, the new attention on what AI can do at this level is certainly bringing awareness of what’s possible. There is no shortage of work being done in almost every niche, with research projects and commercial science efforts combining the power of AI within them. 

In addition to the three above, here are a two areas worth exploring.

Trend 1: Artificial intelligence (AI) doesn’t replace people. Perhaps we should call that a myth. I don’t say this for any fear factor, but technology always disrupts and often replaces people, but opens doors for new possibilities. 

Almost certainly, AI is going to cause disruption in every industry it touches. But, there will be opportunities as well, for leveraging it in smart ways that only humans can do, for now. The current discussion in manufacturing is that it will allow robots and people to collaborate to accomplish tasks, often called Cobots or Co-Bots. 

The logic is that as AI and the connected machines become smarter, they will perform repetitive tasks so that humans will be able to solve higher-level thinking and tasks. Stay aware of how the tech is being used in your field and be smarter than it, in whatever way you can. 

Trend 2: As the above gains traction, there are going to be opportunities for technicians.

Materials science touches nearly every industry. If you need more info, the Online Instructional Resources for Material Science Technology Education (MatEdU) is an NSF funded project housed at Edmonds College. There are short-term certificates and training programs here and all around the USA.

Check out these industry reports and resources for ideas around how materials science is involved in the future of energy (think solar, wind, batteries, and more). Chemistry and advanced materials labs are going to need people who can think and run machines, code, and repair equipment, too.

According to StartUs Insights with their Top 10 Materials Industry Trends & Innovations in 2022 report (we hadn’t discovered this post/report summary when we wrote our first post, but this is an excellent and well-linked post, including companies working in each space). 

  •      Sustainable Materials
  •      Smart & Responsive Materials
  •      Nanotechnology
  •      Additive Manufacturing
  •      Lightweighting
  •      Material Informatics
  •      Advanced Composites
  •      Graphene & 2D Materials
  •      Surface Engineering
  •      Materials Management 4.0

The U.S. Department of Energy has a page dedicated to Next-generation materials, which highlights their research and development portfolio. When you scroll down on that page, take note that there are +Plus signs that you can click to expand for more information. They are easy to miss. That’s where all the next gen goodies are listed. You will find a variety of “novel materials with improved properties, such as materials for harsh environments, and advanced composite and lightweight materials.”

Thanks to the folks at Mewburn Ellis, a patent, trademark, and intellectual property firm based in London, they have an excellent materials informatics blog post that explains how materials science needs an information or data-based approach to development:

Mewburn also deserves a shoutout for the link to this TEDx talk from Dr. Taylor Sparks, a Professor of Materials Science and Engineering from the University of Utah:

Discover the materials of the future…in 30 seconds or less | Dr. Taylor Sparks | TEDxSaltLakeCity (Here is the direct link in case the embedded video does not show in your browser).

As MatEdU News has done in the past, we have pulled in resources from the World Economic  Forum (WEF). These are some of their 2022 posts, filtered by Advanced Materials. At the end of this list, which should give you areas to explore related to materials and the need for technicians, engineers, and other specialists, is a list of categories you can use to dig in even deeper. 

WEF Agenda article categories

As the need for more efficient, lightweight, and sustainable materials grows (just to name a few), we are watching in real-time the massive technology advances that open up new materials and methods. Naturally, that will lead to a growing demand for materials scientists and technicians. Please let us know if and how you use these resources to explore career and internship opportunities in the field of materials science in 2023 and beyond.


References:

April 7 2022 MatEdU News post: Keeping Up with Materials Science Research and Trends Impacting Education and the Workforce.

For those interested in Nanotechnology, I will be including a number of trends from StartUs Insights and their Nano trends report for 2023, for our sister organization — the Micro Nano Technology Education Center (a national center for Micro Nano) and its Think Small news section. Stay tuned in early January. 

For a deep dive on AI within manufacturing and materials, this World Economic Forum report can be downloaded here: Unlocking Value from Artificial Intelligence in Manufacturing

Note, this file will automatically start downloading into your download folder, on most browsers, so if it opens a blank tab or screen, look for where your system places PDF and document downloads.

Materials Washington (MatWA) Adds New Modules for Materials Education

Signed into law by President Joe Biden on August 9, 2022, the CHIPS and Science Act provides funding of $280 billion to help the semiconductor industry and the research that supports it. 

The funds will usher in the new National Science Foundation Directorate for Technology, Innovation and Partnerships (Meet TIP) with a mission to develop technologies, such as, artificial intelligence, quantum computing, advanced manufacturing, 6G communications, energy, and materials science. 

After all, new semiconductor chips need lots of research and development work, particularly in an area that people might forget — materials science. 

In a small, but important way, MatEdU (The Online Instructional Resources for Material Science Technology Education), continues to work and serve to share its mission: to advance materials technology education nationally. Without it, we won’t have the technicians and researchers needed to help bring our nation’s chip manufacturing to the next level.

MatEdU will continue to provide educators with ready-to-use educational materials, in the form of modules, that can be downloaded as PDFs or PowerPoint slides. Four new modules were recently added and they focus on topics that are in high demand.

  1. Material Integrity Plan Supporting Aviation/Land/Marine Industry Transportation
  2. Rare Earth Elements – An Introduction
  3. Sustainable Composite Materials from Renewable Resources
  4. The Circular Economy of Lithium-Ion Batteries

Thanks to MatWA for all of its support in driving important education and outreach in the area of sustainable materials for our nation’s manufacturers. 

Visit the MatWA – Materials Education (MatEdU) page where you will see the “JCDREAM Modules button” as shown in the image below. Click that button and a list of modules will pop up listing each module and the PDF or PPT files ready for download. The four new modules mentioned above are also on that list. 

Screenshot of the Materials Washington page that shows the JCDREAM Modules button that leads you to the current list of educational modules.

These nine modules were published in March 2022. They are available on the page above.

  1. Introduction to Magnetic Composites
  2. Additive Manufacturing of Magnetic Materials
  3. Fused Filament Manufacturing of Magnetic Composites
  4. Lithium, The 3rd Element
  5. 3D Printing Filament Recycling and Reuse
  6. Very Berry Solar Cells
  7. The Global Impact of Design and Innovation
  8. Videoing Individual Relationships with Earth’s Elements and Materials
  9. Evaluating the Next Generation of Solar Cells

With billions of dollars about to supercharge materials science research and other critically needed areas, MatEdU plans to keep the educational resources available for up and coming technician programs at U.S. community and technical colleges, as well as 4-year institutions.

Additional resource for those wanting to know more about the CHIPS Act activity. The Commerce Department has launched a website, CHIPS.gov, that will serve as the central hub for implementation resources, including funding opportunities and timelines.

Virginia Professor Jean Frank Invited To White House

Professor Jean Frank from Virginia Peninsula Community College

It isn’t everyday that one gets an invite from the White House and Professor Jean Frank, Interim Associate Dean STEM at Virginia Peninsula Community College, briefly thought it might be a hoax. As she read further, she knew that it was a genuine invitation via email to be part of a workshop focused on growing and diversifying the space workforce.

According to Professor Frank, the email explained that during a December 2021 National Space Council meeting, Vice President Harris tasked the Office of Science and Technology Policy (OSTP) with leading an effort to use space to inspire more students to explore STEM fields and identify and reduce barriers to entering and staying in the space workforce.

The OSTP along with the National Space Council, and its Science, Technology, Engineering, and Mathematics (STEM) Task Force, created a partnership with the U.S. Department of Labor (DOL) wanted experts like Jean Frank to participate in a roundtable and workshop to foster a robust conversation among space workforce stakeholders on sector-specific needs to inform workforce strategy for the space industry.

The morning focused on identifying in-demand occupations, skills, and competencies in the space workforce, hosted by senior leaders from the Department of Labor including Chief Innovation Officer Chike Aguh and Senior Policy Advisor Manny Lamare. The afternoon included a roundtable hosted by leaders from the Space Council and OSTP including Director of Space STEM Policy Elaine Ho and Senior Policy Advisor Dr. Quincy Brown highlighting evidence-based practices to grow and diversify the space workforce.

Professor Frank added there were representatives from about 90 companies and educational institutions in attendance. Industry teams included CEOs, hiring managers, technicians, and engineers. Educational Institutions sent professors, staff and others with STEM degrees in engineering, and engineering technology. 

In addition to her many years of technician-level work and many technical certifications and degrees, Professor Frank stated in a MatEdU interview and profile that “materials matter more than ever. Materials are being manipulated for environmental concerns, ex: coatings to create corrosion free metals, glass that automatically darkens, flexible solar cells, fuel cell membranes, etc. 3D printing has opened a whole new manufacturing environment, parts that can be dreamed up and created almost overnight. Materials are expanding to include 3D electric ink – conductive ink, for the 3D printers. Allowing for the integration of electric circuits within the 3D printed objects. Nano technology has also opened new worlds of manufacturing for composites, semiconductors, metallic and glass films, etc.” You can read her full bio here on the 

MatEdU Partner Page. Click the “View Spotlight” link on the right side to open the pop-up window.        

When you read any part of Jean Frank’s resume, you will know that the White House would want her at any meeting like the one she recently attended. She has the deep and valuable bank of knowledge and hands-on, boots-on-the-ground list of experiences that the government would want to tap into. No hoax there.

May Roundup of Materials Science News Updates

In our April post: Keeping Up with Materials Science Research and Trends Impacting Education and the Workforce, we highlighted a number of sites that offer research you can use to evaluate and understand the world of materials science and additive manufacturing, including a curated list of relevant World Economic Forum posts, along with their Transformation Map on Advanced Materials (well worth the time to study). 

Liquid Molten Steel Industry

In case you missed it, Materials Education experts added new modules to help educators, students, and others to teach and learn about materials science. Check out all the new Powerpoint and PDF downloads here: New Modules on MatEdU. To give you an idea of the topic diversity:

  • Introduction to Magnetic Composites – PDF
  • Additive Manufacturing of Magnetic Materials – PDF
  • Fused Filament Manufacturing of Magnetic Composites – PDF
  • Lithium, The 3rd Element
  • 3D Printing Filament Recycling and Re-Use
  • Very Berry Solar Cells
  • The Global Impact of Design and Innovation
  • Videoing Individual Relationships with Earth’s Elements and Materials
  • Evaluating the Next Generation of Solar Cells

Some of the big news late last year included that Wohlers Associates was acquired by ASTM International. The well-known publisher of the 3D Printing “Bible” and a major resource to those developing and exploring new materials, Wohlers Associates, will continue to work with ASTM to produce the annual Wohlers Report (link takes you to the MatEdU Post with a short list of the top materials updates from the annual report).

At the Federal level, the White House announced a new program for Additive Manufacturing, called AM Forward, that will likely drive innovation within the Materials world. According to the announcement and Fact Sheet

“AM Forward builds on that work and advances key Administration goals:

  • More resilient and innovative supply chains, by investing in small and medium sized companies;
  • Growing industries of the future, overcoming coordination challenges that limit adoption of new technologies like additive manufacturing; and
  • Both inventing and making more in America, through investments in regional manufacturing ecosystems.

Each of these goals is also advanced by the Bipartisan Innovation Act (BIA), which establishes a Supply Chain Office at the Department of Commerce, supports foundational technologies such as additive manufacturing, and invests in regional tech hubs as well as increasing funding for Manufacturing USA Institutes and the Manufacturing Extension Partnership.”

Materials Science on Twitter, LinkedIn, and Instagram

As you would expect, we follow and track various hashtags, such as #MaterialsScience across a range of platforms. We even keep up on TikTok around #MaterialScience (although we prefer to spell it with an “S” on the end). 

Let us know if you find any interesting posts on social media and we’ll check them out, too. 

Wohlers Report 2022 Finds Strong Industry-Wide Growth

Wohlers Associates, the well-known additive manufacturing consultancy firm, and close ally of both MatEdU and TEAMM, recently acquired by ASTM International, released its annual report: Wohlers Report 2022.

MatEdU News and AM News (from our sister organization TEAMM) have both published details from the report over its many years of serving the AM industry (links below). The annual report focuses on the state of 3D printing and often highlights important advances within materials science. 

Key takeaways from the 425-page 2022 report show the additive manufacturing industry grew by 19.5 percent in 2021, which is up from 7.5% growth in 2020. This is largely attributed to a sustained, global recovery from the COVID-19 pandemic.

Polymer Powder

As the above image shows, from the report, “As the technology and industry mature, a growing number of companies are using AM for custom products and series production, according to the new report. A sign is the growth of polymer powder consumption in 2021, which grew by 43.3% to overtake photopolymers as the most used AM material.”

The materials section digs in the companies producing new materials or modifying materials for industry needs. Many of these smaller, nimble materials manufacturers are often of interest to academic partners within the National Science Foundation network for their research projects and community initiatives. 

3D Printing Materials

Some useful examples from the materials chapter:

  • Taulman3D offers t-glase, a tough, clear PET material, which has been cleared by the Food and Drug Administration for food contact and containers. TreeD makes a range of ‘exotic’ filaments, including clay-filled and bone-like materials.
  • Materials provider Proto-pasta creates filaments in brass, bronze, copper, iron, or steel powder with a PLA binder. ColorFabb of the Netherlands produces a variety of metal-filled PLA filaments. Parts can be polished, tarnished, and rusted like traditional metal parts.
  • Some suppliers are producing metal-filled filaments to create a metal part… BASF announced its Ultrafuse filament. Many small and large printer manufacturers, such as BCN3D, Desktop Metal, and Markforged have integrated this capability into proprietary systems.

Although the report section on materials and processes is a favorite here at MatEdU News, it also covers almost everything you need to know to stay informed about additive manufacturing in the USA and around the world — one of the reasons it is called the “Bible of 3D printing.” 

Here are some of the new and expanded features of Wohlers Report 2022:    

  • scaling AM into production;
  • workforce development and sustainability;
  • Women in 3D Printing;
  • ground-breaking R&D programs;
  • reports from industry experts in 34 countries; and
  • the future of AM

More information on Wohlers Report 2022 is available here.


As mentioned above, here are three recent posts from MatEdU News and TEAMM:

  • Wohlers Associates Report on Additive Manufacturing Post-Processing – Materials Education (MatEdU)
    • Post-processing is one of three major phases of producing 3D-printed parts. According to research conducted for Wohlers Report 2021, nearly 27% of the cost of producing AM parts comes from post-processing. The study involved input from 124 service providers in 27 countries. The following chart presents the cost segmentation between pre-processing, printing, and post-processing among companies that offer both metal and polymer AM.

Keeping Up with Materials Science Research and Trends Impacting Education and the Workforce

In late 2021, Mel Cossette, Executive Director and Principal Investigator for the National Science Foundation’s Advanced Technological Education-funded Online Instructional Resources for Material Science Technology Education (home of MatEdU News) spoke about Industry 4.0 and what it means for the manufacturing workforce. 

Yellow off road traffic sign with industry 4.0 ahead text on blue sky. Horizontal composition with copy space.

Learn more about her presentation: Manufacturing Jobs Are Big Part Of The Future Of Work

The three biggest trends to watch, according to many of these reports and links, include:

  1. Using artificial intelligence (AI) to create new materials, known as “Generative AI” an engineer enters project parameters and the software creates multiple versions. It is like putting 1,000 (or more) materials scientist brains against a question or idea and speeding up the process of discovery. 
  2. Materials advances in biological areas from pharmaceutical (3D printing personalized medicines) to implants to research (that will undoubtedly lead to more new areas where materials will guide healthcare). 
  3. Sustainability in Materials Science is the last major trend we spotted in this exploration. Although there are many other big changes coming to the world of materials, finding a way to combine Industry 4.0 concepts with the Circular Economy (aka sustainability) is crucial to smart science.

Industry 4.0, as a quick refresher, is shorthand for the “Fourth Industrial Revolution” and sometimes abbreviated as 4IR. It has given and is currently providing innovation on an unprecedented scale, including robotics, artificial intelligence, 3D printing (additive manufacturing), biotechnology, and nanotechnology (post on a Micro Nano partner site highlighting growing in materials scientist jobs), to name but a few. Research and trends around Industry 4.0 frequently include how materials science is influencing this larger trend.

Starting with the first trend and speaking to Mel Cossette’s insights about how manufacturing jobs are building our future, Generative AI for New Materials advances, is the focus of this Redshift by Autodesk piece: AI in Manufacturing: How It’s Used and Why It’s Important for Future Factories.

One of the top resources for keeping up with current research and trends in materials science and connected industries and niches is the World Economic Forum. There is a free level account and it grants you access to the many ways that they curate and then organize data on a wide range of topics impacting the world’s economies. 

We did a search on materials science and here is a glimpse of the many posts that they pull into what they call “Transformation Maps.” This chart is interactive and allows you to see related concepts and topics and to click into those sections. It is robust and extremely helpful if you are trying to get a sense of the space. Hang on for a big list of resource and trend links below…

Screenshot of WEF Transformation Map on “Advanced Materials” with related categories.

The Top Tech Trends post by McKinsey shows materials advances will impact many industries: 


Graphene Research at Rice University

“Developments in materials science have the potential to transform multiple market sectors, including pharma, energy, transportation, health, semiconductors and manufacturing. Such materials include graphene – a single layer of carbon atoms arranged in a honeycomb lattice configuration, which is around 200 times stronger than steel, despite its incredible thinness. It is also a very efficient conductor and promises to revolutionize semiconductor performance. Another is molybdenum disulfide – nanoparticles of which are already being used in flexible electronics.”

— McKinsey Top Tech Trends

McKinsey also highlights that a bio revolution is underway thanks to these materials advances: “Propelled by AI, automation and DNA sequencing, the bio revolution promises the development of gene-therapies, hyper-personalized medicines and genetics-based guidance on food and exercise.”

These changes also mean job opportunities, and that is why the National Science Foundation funds a wide and deep range of advanced technological education projects like MatEdU and the Micro Nano Technology Education Center (MNT-EC) (with its many partners including InnovATEBIO profiled here in 2021) to build the curriculum and training modules needed by students and industry. Biotech Careers offers a detailed look at that intersection where trends meet job opportunity. The MNT-EC Industry Partner page gives an idea of how NSF projects pull in companies looking to be part of the work to build educational programs that meet student interest and employer needs.

Materials advances through the methods mentioned above only give a glimpse into part of what makes rapid iterations work — researchers cannot iterate without testing and it happens in a big way through 3D Printing. ASME recently posted: Metamaterials Expand Possibilities in Biomedical Engineering and it confirms, at least in part, how metamaterials are fabricated quickly using additive manufacturing (aka 3D Printing).

The National Library of Medicine: National Center of Biotechnology Information has a large volume (of course) of materials-oriented nanobio medical and health articles. Here are a few:

For the mega-trend of sustainability, the World Economic Forum kicks things into gear: Upskill for Green Jobs of the Future. ASME explains how Ceramic Materials Advance Climate Change Efforts.

Greentown Labs is aiming to be the leading hub for startups (and the wonderful people building them) to work toward the shared goal of a sustainable, renewable future. Their relatively new Careers in Climatetech newsletter provides a glimpse into the materials science work happening, but also across clean tech / green tech science and engineering.

We will continue to add insights, trends, and research that can help you keep up with the world of materials science and education. If you know of some interesting research or have trend data, send it our way.

New Modules on MatEdU

One of the primary goals of our materials education “MatEdU” site is to provide educators with ready-to-use educational materials, or more specifically course curriculum in the form of modules that can be downloaded as PDFs or PowerPoint slides or occasionally other document formats. In the last month, nine new modules were added and they focus on topics that are in high demand.

When you click the links below, your browser will likely download the file automatically and not open a specific web page. However, you can also go and search within the MatEdU Modules section for these titles to read a bit more about them (search for the title or author to quickly get the module you want). The new modules cover composites, solar cells, Lithium, 3D printing, design, and materials (in general).


Introduction to Magnetic Composites – PDF

Introduction to Magnetic Composites – PPTX

Grady, K., “Introduction to Magnetic Composites,” 2020. Middle School, High School and Introductory College levels.


Additive Manufacturing of Magnetic Materials – PDF

Additive Manufacturing of Magnetic Materials – PPTX

Hasanov, S., “Additive Manufacturing of Magnetic Materials,” 2020.    Advanced High School and Introductory College levels.


Fused Filament Manufacturing of Magnetic Composites – PDF

Fused Filament Manufacturing of Magnetic Composites – PPTX

Hasanov, S., “Fused Filament Manufacturing of Magnetic Composites,” 2020. Advanced High School and Introductory College levels.


Lithium, The 3rd ElementPDF

Grady, K., Liu, J., and Stoebe, T., “Lithium, The 3rd Element,” 2021. High School and Introductory College levels.


3D Printing Filament Recycling and Re-Use – PDF

Chinn, B., “3D Printing Filament Recycling and Re-Use,”  2021. Advanced High School and Introductory College level.


Very Berry Solar CellsPDF

Solomonson, C., “Very berry solar cells,”  2021. Advanced High School and Introductory College levels.


The Global Impact of Design and InnovationPDF

Davishahl, J and Misasi, J, “The Global Impact of Design and Innovation,” 2021. Advanced High School and Introductory College levels.


Videoing Individual Relationships with Earth’s Elements and MaterialsPDF

Johnson, Craig, “Videoing individual’s relationships with Earth’s elements and Materials,”  2021. High School and Introductory College levels.


Evaluating the Next Generation of Solar CellsPDF

Schlenker, Cody and Hendrickson, Danica, “Evaluating the Next Generation of Solar Cells,” 2021. College level.


If you are an educator in need of lessons for your classroom around materials science, there are dozens here that may be of use in the MatEdU Modules (link above) or you can also check out the larger collection under Instructional Resources.

Monthly Roundup of Materials Science Trends, News, and Updates

On our sister site TEAMM AM News (focused on additive manufacturing and materials), we introduced a section called the Editor’s Corner, to share a monthly list of curated articles, videos, and social feeds that we discovered as we worked on the website and met with our partners. We want to share the same approach here on the Online Instructional Resources for Material Science Technology Education (MatEdU)

We are honored to report a small (big) mention on the National Science Foundation (NSF) Crosscutting Activities in Materials Research (XC) page. The site mentions both the National Resource Center for Materials Education, focusing on community college-level education and the M-STEM (Materials in STEM) annual workshop archives. The recognition is appreciated. 

NSF Science Nation

Speaking of NSF, they have a YouTube channel section or series called Science Nation, where they profile a variety of materials science advances (as you know, MatSci is in everything, but the channel is not entirely focused on materials…). This 2021 video on Quantum Crystals highlights how “Josh Goldberger and his team at the Ohio University have created a crystal that may one day re-write the book on how electronics operate,” according to the YouTube summary. 

The summary also explains a bit more about the research: “Cornell University will lead a Materials Innovation Platform, a new NSF mid-scale instrumentation program supported in the Division of Materials Research (PARADIM). The platform seeks to advance fundamental understanding of oxide-based hetero-interfaces with a range of two-dimensional (2D) material systems including oxides, chalcogenides and graphene through transformational research and mid-scale investments in instrumentation for bulk and thin film crystal growth and characterization. The research in this episode was supported by grant: #1539918. 

Clean Drinking Water from Air

This one sounds like an idea out of Star Trek – water from air. But if you follow this link, you will find out there’s been some innovative materials science and micro nano sensor work making it possible to extract water from air with solar powered hydropanels. 

According to Forbes, “An Arizona company, SOURCE, and its founder, Cody Friesen, a materials scientist and associate professor at Arizona State University, spent nearly seven years developing the Source Hydropanel… Pure water is mineralized with magnesium and calcium to achieve an ideal taste profile. Finally, sensors in each hydropanel monitor and optimize the water to maintain quality. The hydropanels produce an average of 3-5 liters of clean drinking water per day (or up to 1.3 gallons).”  This post was originally shared on the Micro Nano Education news page

Two more clean energy mentions: One of our partners and collaborators, the Joint Center for Deployment and Research in Earth Abundant Materials (JCDREAM), is on the right track with its goal to find and explore existing alternatives and future alternatives with “earth-abundant materials.” More and more clean energy experts and analysts are calling attention to challenges ahead. Twitter account Soli shared this: “Some individual minerals will see particularly sharp jumps. The World Bank says, “graphite and lithium demand are so high that current production would need to ramp up by nearly 500% by 2050 under a [2 degree scenario] just to meet demand.”). JCDREAM is working hard to find alternatives. 

Jobs, Research, Internships

Deadline approaching for Research Associate at the Louisiana State University Audubon Sugar Institute on February 2, 2022: “We are hiring! Come work with me at the Audubon Sugar Institute @LSUAgCenter to research exciting issues about LA sugarcane. If you are interested in sensors, data science, sustainability and renewable materials, please apply…”

If you know of upcoming research opportunities, internships, or jobs for two year and four year students, please send them to us. We cannot include all of them, but a big part of our mission is to help students find meaningful career opportunities.

Related to work, in a recent national presentation, Principal Investigator Mel Cossette shared how manufacturing is a big part of the future of work

Materials Science on Twitter

The Society of Women Engineers has a wide range of excellent resources and attention-getting blog posts. A recent share on Twitter led us to this post from the SWE:  Check out the interviews below with Materials Science and Engineering students Katherine and Andrea to learn more about their experiences and how you can #BeThatEngineer!

The SWE article also pointed us to this fascinating, in-depth piece on the James Webb telescope and the work of Sandra Irish. If you are not following the NASA Webb account on Twitter, start now.

Until next month,

Manufacturing Jobs Are Big Part Of The Future Of Work

Manufacturing Day is held on the first Friday of October. Organized by the National Association of Manufacturers, the nationwide event seeks to increase awareness among students, parents, educators and the general public about modern manufacturing and to make it clear that there are many career opportunities, in addition to pointing out that manufacturing has changed dramatically — it is cleaner, with advanced technology, and far more hip than its smokestack past. 

Most states do as the name suggests — have a one day event filled with factory tours and event presentations. But in New Mexico, they run Manufacturing Day for the entire month. 

The New Mexico Manufacturing Extension Partnership (MEP) organizes and sponsors events and a 3-Day Advanced Manufacturing Summit (that link takes you to each day’s virtual presentations on YouTube).

Mel Cossette, Executive Director and Principal Investigator for the National Science Foundation’s Advanced Technological Education funded Online Instructional Resources for Material Science Technology Education (home of MatEdU News) housed at Edmonds College in Lynnwood, WA, presented on Workforce Development. She is also the Co-PI on a newly funded NSF ATE Micro Nano Technology Education Center and Co-PI on the MANEUVER Project with Purdue Northwest. Mel has 20+ years of experience in manufacturing education focusing on technician education and workforce development. 

Ms. Cossette opened with the importance of embracing the future workforce, with all of its changes and opportunities. As you can see in the image above, people are searching for manufacturing jobs. She then went through a variety of manufacturing areas and how they all lead to growth in manufacturing as a career:

  • Additive Manufacturing (aka 3D Printing)
  • ASTM and technician training and core competencies (and how the Technician Education in Additive Manufacturing & Materials — TEAMM was a big part of defining those new standards)
  • Manufacturing Workforce and new skills needed

She highlighted a variety of statistics to help attendees wrap their minds around just how big and vast the manufacturing job market is:

  • Preliminary numbers indicate there will be 942,000 manufacturing job openings – from the U.S. Bureau of Labor Statistics, July 2021.
  • Deloitte and The Manufacturing Institute (NAM) reported — 2.4 million manufacturing jobs may go unfilled by 2028.

“To be prepared, not only for today’s jobs but for those of a rapidly changing, highly automated future, technicians will need skills beyond those required by their specific role and industry,” she said. 

In summary, Ms. Cossette said that “we need to embrace the future of the manufacturing workforce… as the start of my presentation I heard this cool comment made by one of the manufacturing folks here. Powell has said, manufacturing is a cool career. I agree.”